Goblint_lib.CongruenceClosure
Domains for C2poAnalysis
.
OCaml implementation of a quantitative congruence closure. It is used by the C-2PO Analysis and based on the UnionFind implementation.
include module type of struct include UnionFind end
The Union Find is used by the C-2PO Analysis. This file contains the code for a quantitative union find and the quantitative finite automata. They will be necessary in order to construct the congruence closure of terms.
type term = UnionFind.term =
| Addr of DuplicateVars.Var.t
| Aux of DuplicateVars.Var.t * GoblintCil.exp
| Deref of term * Z.t * GoblintCil.exp
val hash_term : term -> int
Two propositions are equal if they are syntactically equal or if one is t_1 = z + t_2 and the other t_2 = - z + t_1.
val equal_term_offset_relation :
term_offset_relation ->
term_offset_relation ->
Ppx_deriving_runtime.bool
val hash_term_offset_relation : term_offset_relation -> int
val compare_term_offset_relation :
term_offset_relation ->
term_offset_relation ->
Ppx_deriving_runtime.int
val equal_block_relation :
block_relation ->
block_relation ->
Ppx_deriving_runtime.bool
val hash_block_relation : block_relation -> int
val compare_block_relation :
block_relation ->
block_relation ->
Ppx_deriving_runtime.int
type prop = UnionFind.prop =
| Equal of term_offset_relation
| Nequal of term_offset_relation
| BlNequal of block_relation
val hash_prop : prop -> int
module T = UnionFind.T
The terms consist of address constants and dereferencing function with sum of an integer. The dereferencing function is parametrized by the size of the element in the memory. We store the CIL expression of the term in the data type, such that it it easier to find the types of the dereferenced elements. Also so that we can easily convert back from term to Cil expression.
module TMap = UnionFind.TMap
module TSet = UnionFind.TSet
module UnionFind = UnionFind.UnionFind
Quantitative union find
module ZMap = UnionFind.ZMap
module LookupMap = UnionFind.LookupMap
For each representative t' of an equivalence class, the LookupMap maps t' to a map that maps z to a term in the data structure that is equal to *(z + t').
module M = Messages
module TUF = UnionFind
module LMap = LookupMap
module BlDis : sig ... end
module Disequalities : sig ... end
module SSet : sig ... end
Set of subterms which are present in the current data structure.
module MRMap : sig ... end
Minimal representatives map. It maps each representative term of an equivalence class to the minimal term of this representative class. rep -> (t, z) means that t = rep + z
val get_transitions :
(((Goblint_lib__UnionFind.term * Z.t) * 'a) TUF.ValMap.t
* TUF.ValMap.key BatMap.Make(Z).t BatMap.Make(Goblint_lib__UnionFind.T).t) ->
(Z.t * term * (Goblint_lib__UnionFind.term * Z.t)) list
Returns a list of all the transition that are present in the automata.
val hash_data : data -> int
Converts the domain representation to a conjunction, using the function `get_normal_repr` to compute the representatives that need to be used in the conjunction.
module NormalFormEval : sig ... end
module LazyNormalFormEval : sig ... end
This is the type for the abstract domain.
val hash : t -> int
val get_normal_form : t -> NormalFormEval.result
Returns the canonical normal form of the data structure in form of a sorted list of conjunctions.
val show_normal_form : LazyNormalFormEval.t -> string
Converts the normal form to string, but only if it was already computed.
Returns a list of conjunctions that follow from the data structure in form of a sorted list of conjunctions. This is not a normal form, but it is useful to print information about the current state of the analysis.
Sets the normal_form to an uncomputed value, that will be lazily computed when it is needed.
val show_all : t -> string
val split :
prop list ->
term_offset_relation list * term_offset_relation list * block_relation list
Splits the conjunction into three groups: the first one contains all equality propositions, the second one contains all inequality propositions and the third one contains all block disequality propositions.
val init_cc : unit -> data
Returns {uf, set, map, normal_form, bldis, diseq}, where all data structures are initialized with an empty map/set.
val congruence_neq : data -> term_offset_relation list -> data
Computes the closure of disequalities.
Update block disequalities with the new representatives.
val closure : data -> (TUF.ValMap.key * TUF.ValMap.key * Z.t) list -> data
Parameters: cc conjunctions.
returns updated cc, where:
Throws "Unsat" if a contradiction is found. This does NOT update the disequalities. They need to be updated with `congruence_neq`.
val add_normalized_bl_diseqs :
data ->
(TUF.ValMap.key * TUF.ValMap.key) list ->
data
Adds the block disequalities to the cc, but first rewrites them such that they are disequalities between representatives. The cc should already contain all the terms that are present in those block disequalities.
Add a term to the data structure.
Returns (reference variable, offset), updated congruence closure
Add all terms in a specific set to the data structure.
Returns updated cc.
Returns true if t1 and t2 are equivalent.
Returns true if t1 and t2 are not equivalent.
val meet_pos_conjs :
data ->
(TUF.ValMap.key * TUF.ValMap.key * Z.t) list ->
data
Adds equalities to the data structure. Throws "Unsat" if a contradiction is found. Does not update disequalities.
Adds propositions to the data structure. Returns None if a contradiction is found.
Add proposition t1 = t2 + r to the data structure. Does not update the disequalities.
Adds block disequalities to cc: for each representative t in cc it adds the disequality bl(lterm) != bl(t)
val remove_terms_from_eq :
(Goblint_lib__UnionFind.term -> bool) ->
data ->
(term * Z.t) BatMap.Make(Goblint_lib__UnionFind.T).t * data
Removes terms from the union find and the lookup map.
val find_new_root :
(TUF.ValMap.key * Z.t) TMap.t ->
((Goblint_lib__UnionFind.term * Z.t) * int) TUF.ValMap.t ->
TMap.key ->
((Goblint_lib__UnionFind.term * Z.t) * int) TUF.ValMap.t
* (Goblint_lib__UnionFind.term * Z.t) option
Find the representative term of the equivalence classes of an element that has already been deleted from the data structure. Returns None if there are no elements in the same equivalence class as t before it was deleted.
val join_eq :
data ->
data ->
data
* (Goblint_lib__UnionFind.term * Goblint_lib__UnionFind.term * Z.t,
TSet.elt * Z.t)
Batteries.Map.t
Join version 1: by using the automaton. The product automaton of cc1 and cc2 is computed and then we add the terms to the right equivalence class. We also add new terms in order to have some terms for each state in the automaton.
val product_no_automata_over_terms :
data ->
data ->
TSet.t ->
data
* (Goblint_lib__UnionFind.term * Goblint_lib__UnionFind.term * Z.t,
TSet.elt * Z.t)
Batteries.Map.t
Join version 2: just look at equivalence classes and not the automaton.
val join_eq_no_automata :
data ->
data ->
data
* (Goblint_lib__UnionFind.term * Goblint_lib__UnionFind.term * Z.t,
TSet.elt * Z.t)
Batteries.Map.t
Here we do the join without using the automata. We construct a new cc that contains the elements of cc1.set U cc2.set. and two elements are in the same equivalence class iff they are in the same eq. class both in cc1 and in cc2.
val widen_eq_no_automata :
data ->
data ->
data
* (Goblint_lib__UnionFind.term * Goblint_lib__UnionFind.term * Z.t,
TSet.elt * Z.t)
Batteries.Map.t
Same as join, but we only take the terms from the left argument.
val join_neq :
TSet.t ZMap.t TMap.t ->
TSet.t ZMap.t TMap.t ->
data ->
data ->
data ->
BatSet.Make(Goblint_lib__UnionFind.T).t BatMap.Make(Z).t
BatMap.Make(Goblint_lib__UnionFind.T).t ->
BatSet.Make(Goblint_lib__UnionFind.T).t BatMap.Make(Z).t
BatMap.Make(Goblint_lib__UnionFind.T).t ->
data
Joins the disequalities diseq1 and diseq2, given a congruence closure data structure.
This is done by checking for each disequality if it is implied by both cc.
val join_bldis :
TSet.t TMap.t ->
TSet.t TMap.t ->
data ->
data ->
data ->
BatSet.Make(Goblint_lib__UnionFind.T).t BatMap.Make(Z).t
BatMap.Make(Goblint_lib__UnionFind.T).t ->
BatSet.Make(Goblint_lib__UnionFind.T).t BatMap.Make(Z).t
BatMap.Make(Goblint_lib__UnionFind.T).t ->
data
Joins the block disequalities bldiseq1 and bldiseq2, given a congruence closure data structure.
This is done by checking for each block disequality if it is implied by both cc.
Check for equality of two congruence closures, by comparing the equivalence classes instead of computing the minimal_representative.
module MayBeEqual : sig ... end
Find out if two addresses are not equal by using the MayPointTo query